
Abstract The diversity and taxonomic relationships of
83 bean-nodulating rhizobia indigenous to Ethiopian soils
were characterized by PCR-RFLP of the internally tran-
scribed spacer (ITS) region between the 16S and 23S rRNA
genes, 16S rRNA gene sequence analysis, multilocus en-
zyme electrophoresis (MLEE), and amplified fragment-
length polymorphism. The isolates fell into 13 distinct
genotypes according to PCR-RFLP analysis of the ITS re-
gion. Based on MLEE, the majority of these genotypes
(70%) was genetically related to the type strain of Rhizo-
bium leguminosarum. However, from analysis of their
16S rRNA genes, the majority was placed with Rhizobium
etli. Transfer and recombination of the 16S rRNA gene
from presumptively introduced R. etli to local R. legumi-
nosarum is a possible theory to explain these contrasting
results. However, it seems unlikely that bean rhizobia orig-
inating from the Americas (or Europe) extensively colo-
nized soils of Ethiopia because Rhizobium tropici, Rhizo-
bium gallicum, and Rhizobium giardinii were not detected
and only a single ineffective isolate of R. etli that origi-
nated from a remote location was identified. Therefore,
Ethiopian R. leguminosarum may have acquired the deter-
minants for nodulation of bean from a low number of in-
troduced bean-nodulating rhizobia that either are poor
competitors for nodulation of bean or that failed to sur-

vive in the Ethiopian environment. Furthermore, it may be
concluded from the genetic data presented here that the
evidence for separating R. leguminosarum and R. etli into
two separate species is inconclusive.
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Introduction

Phaseolus vulgaris L. (common bean) is native to the high-
land regions of Mesoamerica and Andean South America;
in both areas beans have been domesticated for more than
7,000 years (Gepts and Bliss 1988; Gepts 1990). Bean is
grown in some parts of the Highlands of Ethiopia even
though Ethiopia is considered the center of origin for
many other leguminous crop plants, including pea, clover,
and lentil (Raven and Polhill 1981). Pea was domesticated,
as early as the fourth century and since that time has been
an integral part of Ethiopian agriculture. As a consequence,
presumably Ethiopian soils harbor Rhizobium legumi-
nosarum, which forms symbiotic relationships with these
native crop legumes.

Initially, all bean rhizobia were classified as R. legumi-
nosarum (Jordan 1984). Later, Rhizobium etli was pro-
posed as a species separate from R. leguminosarum based
on results of variation in chromosomal markers deter-
mined by multilocus gel electrophoresis (Pinero et al.
1988; Segovia et al. 1993). Variation in the 16S rRNA
gene sequences of R. leguminosarum and R. etli were re-
ported subsequent to the proposal to separate these two
species (van Berkum et al. 1996). Similarly, Rhizobium
tropici as a bean-nodulating species was proposed based
on variation in chromosomal markers (Martinez et al. 1991)
before Willems and Collins (1993) reported the 16S rRNA
gene sequence. The 16S rRNA sequences of R. legumi-
nosarum and R. etli or R. tropici are very similar and vary
only by 1 and 2%, respectively (van Berkum et al. 1996).
In the case of R. etli and R. leguminosarum, 16S rRNA
gene sequence variation may well be inconclusive evidence
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to separate these two species, especially since van Berkum
and Eardly (1998) concluded that phylogenetic relationships
based on 16S rRNA gene sequence variation are unreliable
evidence for resolving species below the genus level.

Suggestions have been made that bean forms nitrogen-
fixing symbiotic relationships with five different rhizobial
species (Amarger et al. 1997; Herrera-Cervera et al. 1999;
Martinez et al. 1991; Segovia et al. 1993; van Berkum and
Eardly 1998; Young 1985). Although bean rhizobia origi-
nating from Latin America have been classified into two
separate species, R. etli and R. tropici (Eardly et al. 1995,
Martinez et al. 1985, 1991; Pinero et al. 1988; Segovia et
al. 1993), some evidence has been reported that Rhizo-
bium gallicum and R. leguminosarum also may inhabit
soils of the Americas (Graham et al. 1999; Sessitsch et al.
1997). Bean rhizobia recovered from African soils were
reported to share molecular characteristics reminiscent of
R. etli and R. tropici (Anyango et al. 1995; Diouf et al.
2000; Tjahjoleksono 1993). To explain the high incidence
of R. etli and R. tropici encountered in West African soils,
Diouf et al. (2000) proposed that bean rhizobia had been
introduced from the Americas together with the seed.

Beans are extensively grown in the Central Highlands
of Ethiopia. This crop is not inoculated but does form ef-
fective symbioses with native rhizobia (Beyene 1985). Al-
though some agronomic information has been reported for
bean rhizobia of Ethiopian origin (Beyene 1985), nothing
else is known. Therefore, our objective in this study was to
characterize bean rhizobia from different bean-producing
areas of Ethiopia for diversity and to determine whether
they are related to R. leguminosarum or to the Latin-
American species R. etli and R. tropici.

Materials and methods

Bacterial strains and growth conditions

Phaseolus vulgaris cultivar Carioca was grown from seeds in
Leonard jars under greenhouse conditions either during May, June,
or July for 5 weeks. The seeds were surface-sterilized before sow-
ing (van Berkum et al. 1994) and were inoculated at the time of
sowing with soil samples (100 mg/seed) collected from different
agro-ecological regions of Ethiopia (Fig. 1). Each jar contained three
plants grown under supplemental lighting (14 h/10 h light/dark cy-
cles) and temperatures were maintained at 24 °C/20 °C. Plants were
removed from the jars and rhizobia were isolated according to the
procedure of Vincent (1970), except for the use of modified arabi-
nose gluconate (MAG) growth media (van Berkum 1990). Single
colonies were selected and pure cultures were examined for nodu-
lation of bean in Leonard jars (van Berkum et al. 1994) and were
subsequently characterized. Bean-nodulating rhizobia originating
from Kenya (Anyango et al. 1995) were not made available to us
for analysis in this study.

Determination of nitrogen-fixation capacity

Plant tests were done in triplicate with three plants per jar in a
greenhouse as described before (van Berkum et al. 1994). Broth
cultures of 13 isolates, each representing different groups identified
by analysis of the internally transcribed space (ITS) region, and two
culture collection strains were used as inoculum. Culture collec-
tion reference strains were R. etli (CFN42, USDA 9032) and
R. tropici (CIAT 899, USDA 9030). The plants were harvested af-

ter 5 weeks to determine nitrogenase activity by acetylene reduc-
tion assay of whole roots (van Berkum and Sloger 1979) and to
measure nodule and shoot dry matter. The data were analyzed for
significant variation by Duncan’s New Multiple Range test using
the software package Unistat version 4.0 (Unistat, UK).

ITS-RFLP and amplified fragment-length polymorphism analysis

Genomic DNA was purified from each isolate grown in MAG
broth for 2 days using a QIAamp tissue kit (Qiagen, Valencia,
Calif., USA) and the procedure specified by the manufacturer.

The ITS regions between the 16S and 23S rRNA genes of each
isolate were amplified by PCR with final reaction volumes of 40 µl
and using the protocols described by van Berkum and Fuhrmann
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Fig. 1 Map of Ethiopia that indicates the location of the different
sites where soil samples were collected for isolation of bean rhizobia

Fig. 2 Similarity among the 13 representative Ethiopian bean iso-
lates based on fingerprint patterns of the internally transcribed space
(ITS) region obtained after digesting PCR products with MspI



(2000). The presence of a single PCR product in each reaction mix-
ture generated from each of the templates was verified in 10-µl sub-
samples by horizontal gel electrophoresis (Sambrook et al. 1989).
The remainder of each sample was then used in a MspI restriction
digestion and the products were incubated overnight at 37 °C. Sub-
sequently, the restriction fragments were precipitated with two
volumes of 100% (v/v) ethanol for 10 min and collected using a

microcentrifuge at full speed for 10 min. Each sample was washed
with 70% (v/v) ethanol and dried in a Speed Vac Concentrator
(Savin Instruments, Hicksville, N.Y., USA). The precipitates were
dissolved in 4 µl of a 5:1 (v/v) mixture of TBE buffer and tracking
dye (dye II, Sambrook et al. 1989) and the molecular sizes of the
restriction fragments in 2 µl of each sample were determined by hor-
izontal gel electrophoresis using a gel mixture of 1% (w/v) agarose
and 1% (w/v) GelTwin (Baker, Phillipsburgh, N.J., USA) with 0.5 µg
ethidium bromide/ml. The gels were examined on a trans-illumina-
tor and were photographed after electrophoresis for 2 h at 120 V.
The presence or absence of restriction fragments of each molecular
size was scored for each lane across the gel to produce a rectangu-
lar data matrix using the software DNA Proscore (DNA Proscan,
Nashville, Tenn., USA). The matrix was used to generate simple
matching coefficients, which were clustered using SAHN to gen-
erate a phenogram using NTSYSpc version 1.6 (Rohlf 1988). Am-
plified fragment-length polymorphism (AFLP) analysis with each
isolate was done and the data were analyzed according to the meth-
ods described by van Berkum and Fuhrmann (2000).

PCR amplification and sequencing analysis of 16S rRNA genes

PCR amplification and sequencing analysis of the 16S rRNA gene
were as described by van Berkum et al. (1996). PILEUP of the
GCG Wisconsin software package was used to align sequences to
derive Jukes-Cantor distances for the construction of a neighbor-
joining tree using the software package MEGA (Kumar et al.
1993). The Shimodaira-Hasegawa test (Shimodaira and Hasegawa
1999) was used to determine whether another hypothetical tree,
constrained for monophyly of R. leguminosarum with isolates Ad2,
Ak3-1, Am4-1, Am4-4, Dn8-8, DZ12, DZ6-4, DZ6-9, DZ6-14,
and DZ8-2, would be less likely than the unconstrained distance tree.
The 16S rRNA gene sequences of the representative isolates Ad2,
Ak3-1, Am4-1, Am4-4, Db4-14, Dn8-8, DZ12, DZ6-14, DZ6-4,
DZ6-9, DZ8-2, Gi7, and Ho-1 have been deposited in GenBank
under accession numbers AY210704 to AY210716.

Multilocus enzyme electrophoresis

One isolate that represented each of 13 different PCR-RFLP ITS
types was included, the reference type strains R. etli (CFN 42,
USDA 9032), R. tropici (CIAT 899, USDA 9030), and R. legumi-
nosarum (USDA 2370), as well as the West African bean strains
ISRA 350, ISRA 362, and ISRA 27 originating from Senegal and
Gambia (Diouf et al. 2000). ISRA-77 was not included in our analy-
sis because, according to Diouf et al. (2000), it has the same elec-
trophoretic type (ET) as ISRA-362. Cultures were grown in 50 ml
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Table 2 The effect of rhizo-
bial inoculation on nitrogenase
activity, nodule dry mass and
shoot dry matter of Phaseolus
vulgaris grown in Leonard jars
in a greenhouse. Numbers in
the same column flanked by
one or more same letters are
not significantly different at
the 5% level of probability as
determined by Ducan’s new
multiple range test

Strain/isolate Shoot dry matter Acetylene reduction Nodule dry matter 
(mg/plant) (µmol C2H4/plant/h) (mg/plant)

Rhizobium etli, CFN 42 1210 defgh* 16.7 bcd 237 cdef
Rhizobium tropici, CIAT 899 2100 ab 17.7 bcd 313 bcde
Ad2 740 hi 17.0 bcd 119 fg
Ak3-1 1306 cdefg 13.7 cde 326 bcde
Am4-1 1676 bcdef 16.0 bcd 353 bcd
Am4-4 1410 bcdefg 22.7 bc 236 cdef
DZ6-4 976 fgh 13.3 cde 230 cdef
DZ6-9 2060 ab 30.7 a 418 ab
DZ6-14 1950 abcd 31.0 a 338 bcd
DZ8-2 1816 abcde 23.0 b 373 abc
DZ12 470 i 6.3 ef 180 ef
Gi7 1966 abc 30.7 a 505 a
Ho1 1540 bcdefg 19.0 bc 326 bcde
Db4-14 1410 bcdefg 16.7 bcd 260 bcdef
Dn8-8 1066fgh 10.7 de 247 cdef
Control 210i 0.0 f 0 g

Profile Represen-
tative
isolates

Number
of
isolates

Isolates included in each
profile

 1 Ad2   1 Ad2
 2 Ak3-1   3 Ak3-1, Ak3-2, Ak3-3
 3 Am4-1   2 Am4-1, Am4-2
 4 Am4-4   2 Am4-3, Am4-4
 5 DZ6-4   2 DZ6-2, DZ6-4
 6 DZ6-9   3 DZ6-9, DZ6-10, DZ6-13
 7 DZ6-14   2 DZ6-14, DZ6-15
 8 DZ8-2   2 DZ8-1, DZ8-2
 9 DZ12   4 DZ6, DZ6-1, DZ7, DZ12

10 Gi7 26 Ak1, Ak2, Ak3, Ak4, Ak5,
Ak7, Ak9, Ak11, Ak12,
Ak14, Am1, Am2, Am5,
Am6, Am7, Gi2, Gi3, Gi4,
Gi5, Gi6, Gi7, Gi8, Ku2,
Ku3, Ku4, Ku5

11 Ho1   1 Ho1
12 Db4-14 25 Db4-1, Db4-2, Db4-4, Db4-6,

Db4-7, Db4-8, Db4-9,
Db4-12, Db4-13, Db4-14,
Db4-15, Db4-16, Db4-17,
Db4-18, Db4-20, Db4-21,
Ku11-1, Ku11-3, Ku11-4,
Ku11-6, Ku11-7, Ku11-8,
Ku11-9, Ku6, Ku7

13 Dn8-8 10 Dn8-1, Dn8-2, Dn8-3, Dn8-4,
Dn8-5, Dn8-7, Dn8-8,
Dn8-9, Dn8-10, Dn8-11

Table 1 PCR-RFLP profiles of the Ethiopian isolates using anal-
ysis of the internally transcribed space (ITS) region between the
16S and 23S rRNA genes



MAG broth for 24 h at room temperature; cell collection by cen-
trifugation and subsequent protein extraction were according to the
methods described by van Berkum et al. (1998). The protein ex-
tracts were divided into aliquots and stored at –20 °C. The aliquots
from each extract were thawed and applied to cellulose-acetate
membranes; proteins were separated by electrophoresis (Herbert
and Beaton 1993) and subsequently stained according to the meth-
ods described by Selander et al. (1986). The following eight en-
zymes were included in the analysis: isocitrate dehydrogenase, glu-
cose-6-phosphate dehydrogenase, 6-phosphogluconate dehydroge-
nase, malic enzyme, malate dehydrogenase, phosphoglucomutase,
phosphoglucose isomerase, and xanthine dehydrogenase. Distinc-
tive mobility variants (electromorphs) of each enzyme, numbered in
order of decreasing anodal mobility, were equated with alleles at
the corresponding structural gene locus. Allele profiles or ETs were
equated with multilocus genotypes. The genetic distance between
pairs of ETs was estimated as the proportion of loci at which dissim-
ilar alleles (mismatches) occurred. Clustering of ETs from a matrix

of pairwise genetic distances was derived by the unweighted pair
group method (Sneath and Sokal 1973). Genetic diversity (h) at an
enzyme locus was calculated as h=[1–Sxi 2] [n/(n-1)], where xi is
the frequency of the ith allele at the locus and n is the number of
ETs in the population. Computer programs for the analysis were
written by T.S. Whittam (Pennsylvania State University).

Results

A total of 83 rhizobial cultures were isolated from nodules
of P. vulgaris plants inoculated with soil samples collected
from different sites in Ethiopia (Fig. 1). The number of
isolates from each region were 1, 13, 9, 16, 13, 10, 7, 1,
and 13 from Adet (Ad), Akaki (Ak), Amaresa (Am), Debre
Berhan (Db) Debre Zeit (DZ), Deneba (Dn), Ginchi (Gi),
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Fig. 3 Phylogenetic relationships of
13 Ethiopian PCR-RFLP reference
isolates reconstructed from aligned 
16S rRNA gene sequences



Holetta (Ho) and Kulumsa (Ku), respectively. Each isolate
was identified by the acronym of the region from which it
originated followed by the number of the nodule from
which the isolation was made. Each of the 83 isolates was
verified for nodulation of bean; preliminary effectiveness
scores were estimated from plant color and height.

PCR-RFLP of the 16S-23S ITS region

From the analysis of the ITS regions, 13 distinct types
among the 83 Ethiopian bean isolates were identified
(Fig. 2). The majority of the isolates (74%) belonged to
types 10, 12, and 13 (Table 1). With the exception of Ad2
and DZ12, the representative isolates formed effective ni-
trogen-fixing symbioses with bean, since plant dry matter
scores were significantly increased over non-inoculated
controls (Table 2). Dry matter accumulation with each 
of the effective isolates compared well with that obtained
with the type strains for R. etli (CFN 42) and R. tropici
(CIAT 899). Nitrogenase activity by acetylene reduction
was observed, with the ineffective isolates possibly indi-
cating late onset of the symbiosis.

Phylogeny based on 16S rRNA sequences

Except for Db4-14 and Ho-1, all the Ethiopian isolates
representing the 13 ITS PCR-RFLP types were placed with
R. etli (Fig. 3). Only Db4-14 was placed together with the
type strain for R. leguminosarum. None of the isolates
grouped with Rhizobium mongolense, R. gallicum, Rhizo-
bium giardinii, or R. tropici.

Multilocus enzyme electrophoresis

The genetic relatedness of the 13 isolates representing the
Ethiopian bean rhizobia was compared with three reference
strains of species that nodulate bean (R. etli, R. tropici, and
R. leguminosarum) and with three representatives (ISRA 27,
ISRA 350, and ISRA 362) from a collection of bean
rhizobia originating from Senegal and Gambia (Diouf et
al. 2000). The type strains for R. gallicum and R. giardinii
were not included in this analysis because none of the iso-
lates from Ethiopia were related to these two species ac-
cording to 16S rRNA gene sequences. A total of 19 dis-
tinctive ETs were identified based on the allelic profile 
of the eight enzymes (Fig. 4). The mean number of alleles
was 5.5, ranging from 4 to 7 electromorphs, and the mean
genetic diversity (H) was 0.732. From clustering analysis
of the data it was confirmed that two strains originating
from West Africa (ISRA 362 and ISRA 350) were closely
related to R. etli and R. tropici (Fig. 4). The third West
African reference strain (ISRA 27) was more divergent.
The majority (nine isolates) of the Ethiopian reference cul-
tures clustered with the type strain for R. leguminosarum,
while one (Ad2) clustered with ISRA 362 and the R. etli
type strain, USDA 9032 (Fig. 4). The remaining two
isolates (Gi7 and Db 4-14) were more closely related 
to ISRA 27; all three were more divergent from the 
three type strains used as reference. None of the Ethiopian
reference isolates were placed with R. tropici type 
strain USDA 9030 and West African reference strain
ISRA 350.

The nine isolates, Ad2, Am4-4, Ak3-1, Am4-1, Dn8-8,
DZ6-14, DZ6-4, DZ6-9 and DZ12 were placed with
R. leguminosarum by multilocus enzyme electrophoresis
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Fig. 4 Genetic distance among
the 13 Ethiopian ITS PCR-
RFLP genotypes, Rhizobium
leguminosarum (USDA 2370),
Rhizobium etli (USDA 9032),
Rhizobium tropici (USDA
9030), ISRA 27, ISRA 350 and
ISRA 362 derived by multilo-
cus enzyme electrophoresis
from allele variation at eight
enzyme loci



(MLEE). This contrasted their placement with R. etli by
sequence analysis of the 16S rRNA genes. Therefore, the
likelihood for a hypothetical phylogenetic tree having these
isolates constrained as a monophyletic group together with
R. leguminosarum and Db4–14 instead of R. etli was tested.
This hypothetical tree was compared to the tree generated
with the unconstrained data set using the Shimodaira-
Hasegawa test (Shimodaira and Hasegawa 1999). The
probability value obtained was p = 0.023, which is lower
than 0.05 and, therefore, constraining the data set to force

monophyly of the 9 isolates with R. leguminosarum and
Db4–14 produced a change in tree topology, which was
significantly less likely than the original tree.

AFLP analysis

The potential for genetic diversity within each ITS PCR-
RFLP type was examined by AFLP analysis and MLEE.
AFLP analysis was done with six types (90% of the iso-
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Fig. 5 Genotype heterogeneity
within each of six ITS PCR-
RFLP types based on results 
of amplified fragment-length
polymorphism analysis. The
isolates of PCR-RFLP patterns
type 1, type 3, type 4, type 5,
type 7, type 8, and type 11
were not included in this
analysis since there were only
one or two isolates within each
type. These types included one
isolate each from Adet and Ho-
letta; two isolates each of the
two types from Amaressa, and
two isolates each of the three
types from Debre Zeit



lates) that included groups with three or more isolates.
MLEE was done only with the three largest groups (ITS
PCR-RFLP types 10, 12, and 13), representing 74% of the
isolates. Within types 2, 6, 9, 10, 12, and 13, respectively,
3, 2, 4, 7, 3, and 5 distinct genotypes were observed by
AFLP profile polymorphisms (Fig. 5). There were 4, 1,
and 2 ETs within groups 10, 12, and 13, respectively, each
with a mean genetic diversity (H) of 0.31, 0, and 0.17, re-
spectively.

Discussion

To our knowledge, there is only the communication of
Diouf et al. (2000) in which a molecular systematic ap-
proach was used to characterize bean-nodulating rhizobia
originating from African soils. Diouf et al. (2000) con-
cluded from MLEE data that West African soils harbored
only R. etli and R. tropici. The MLEE results from our
study and those of Diouf et al. (2000) significantly differ
because R. leguminosarum was predominantly detected in
Ethiopian soils. Soils of Kenya (neighboring Ethiopia)
have been reported to harbor bean-nodulating rhizobia sim-
ilar to R. leguminosarum, R. etli, and R. tropici (Anyango
et al. 1995), but the authors indicated that their character-
ization was presumptive since little molecular systematic
evidence had been gathered. Variation in rhizobial popu-
lations between Ethiopia (our study) and the West African
nations of Senegal and Gambia (Diouf et al. 2000) can be
expected because of dissimilarity in native legume species
and differences in geographic location and topography.

Another difference between bean-nodulating rhizobia
in Ethiopian and those in West African soils is the level of
genetic diversity. We detected 13 ITS PCR-RFLP types
among 83 isolates, while Diouf et al. (2000) reported only
two among 58 isolates, and one of the two was subdivided
into three. Differences in the level of genetic diversity also
were apparent from the MLEE data. We detected that each
PCR-RFLP representative strain had a different ET and
that up to four ETs or seven AFLP polymorphisms could
be detected within each PCR-RFLP group. In contrast,
Diouf et al. (2000) reported only four ETs among 54 iso-
lates with a mean genetic diversity of 0.44 when they ex-
cluded the four isolates with characteristics of R. tropici.
The mean genetic diversity we observed was 0.73 among
the isolates representing the 13 PCR-RFLP types, none of
which grouped with the R. tropici type strain CIAT 899.

Based on results of MLEE, we placed nine of the 13
PCR-RFLP representative isolates with R. leguminosarum,
one with R. etli, two with the West African isolate ISRA
27, and none with R. tropici. Diouf et al. (2000) indicated
that ISRA 27 belongs to R. etli. However, we wish to
point out that Diouf et al. (2000) reported a wider genetic
diversity by MLEE among the R. etli reference strains
used in their study than between the type strains for R. etli
(CFN 42) and R. tropici (CIAT 899). Similarly, we observed
from the MLEE data that ISRA 27 was genetically more
different than the reference strains of R. etli, R. tropici,
and R. leguminosarum (USDA 2370) were to each other.

The most logical conclusion would be that the R. etli ref-
erence strains F8 and F16 that were used by Diouf et al.
(2000), should not have been assigned to R. etli. Conse-
quently, subgroup II.3 (ISRA 27) bean-nodulating isolates
from Senegal and our isolates Gi7 and Db4–14 also prob-
ably should not be assigned to R. etli.

Although nine Ethiopian isolates grouped with R. legu-
minosarum by MLEE analysis, we placed them with
R. etli by sequencing analysis of the 16S rRNA gene. We
attempted to constrain the phylogenetic tree by changing
the placement of these nine isolates into a group with
R. leguminosarum. However, this produced a tree topol-
ogy that was significantly less likely by the Shimodaira and
Hasegawa test (Shimodaira and Hasegawa 1999). There-
fore, we concluded that these nine isolates with ETs char-
acteristic of R. leguminosarum had divergent 16S rRNA
alleles that were reminiscent of the sequences reported for
R. etli (van Berkum et al. 1996). Our observation is simi-
lar to that reported by Eardly et al. (1995) for bean-nodu-
lating rhizobia of Colombian origin, in which 17 ETs char-
acteristic of R. etli had 16S rRNA gene PCR-RFLP pat-
terns reminiscent of R. leguminosarum. Our results and
those of Eardly et al. (1995) differ since the Colombian
R. etli had 16S rRNA alleles of R. leguminosarum while
our Ethiopian R. leguminosarum had 16S rRNA alleles of
R. etli. Eardly et al. (1995) concluded that the most plau-
sible explanation would be transfer and recombination of
the 16S rRNA gene either in part or as a whole. Certainly,
the possibility for transfer and recombination between di-
vergent 16S rRNA alleles in rhizobia has been demon-
strated (van Berkum et al. 2001, 2003). The placement of
Ho-1 with Agrobacterium may be explained by recombi-
nation since this isolate had an ITS-PCR RFLP pattern
similar to Am4-4, Db4-14, Dz6-4, and Dz8-2, which were
placed with R. etli and R. leguminosarum by 16S rRNA
gene sequence.

It seems unlikely that bean rhizobia originating from
the Americas (or Europe) extensively colonized soils of
Ethiopia because we failed to detect R. tropici, R. gallicum
and R. giardinii and identified only a single isolate of
R. etli that was ineffective for nitrogen fixation and origi-
nated from a remote location. Therefore, it is not com-
pletely clear how R. leguminosarum in Ethiopian soils ac-
quired the genetic information for nodulation of bean, nor
is it apparent how Ethiopian rhizobia gained the 16S rRNA
gene sequence characteristic of R. etli by recombination.
Ethiopian R. leguminosarum may have acquired the deter-
minants for nodulation of bean from a low number of in-
troduced bean-nodulating rhizobia that either are poor
competitors for nodulation of bean or that failed to sur-
vive in the Ethiopian environment. Furthermore, it may be
concluded from the genetic data presented that the evi-
dence for separating R. leguminosarum and R. etli into two
separate species is inconclusive.
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